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The mixed-Eulerian–Lagrangian method using high-order boundary elements, de-
scribed in Xue et al. (2001) for the simulation of fully nonlinear three-dimensional
wave–wave and wave–body interactions, is here extended and applied to the study
of two nonlinear three-dimensional wave–body problems: (a) the development of
bow waves on an advancing ship; and (b) the steep wave diffraction and nonlin-
ear high-harmonic loads on a surface-piercing vertical cylinder. For (a), we obtain
convergent steady-state bow wave profiles for a flared wedge, and the Wigley and
Series 60 hulls. We compare our predictions with experimental measurements and
find good agreement. It is shown that upstream influence, typically not accounted
for in quasi-two-dimensional theory, plays an important role in bow wave prediction
even for fine bows. For (b), the primary interest is in the higher-harmonic ‘ringing’
excitations observed and quantified in experiments. From simulations, we obtain fully
nonlinear steady-state force histories on the cylinder in incident Stokes waves. Fourier
analysis of such histories provides accurate predictions of harmonic loads for which
excellent comparisons to experiments are obtained even at third order. This confirms
that ‘ringing’ excitations are directly a result of nonlinear wave diffraction.

1. Introduction
Nonlinear interaction of steep surface waves with large floating structures is a

complex and challenging hydrodynamic problem of fundamental and practical interest
in naval architecture and ocean engineering. Although linearized theory is often
sufficient for routine design, it is precisely the conditions of extreme loads and motions
essential to the critical performance, safety, and even survival of such structures, for
which nonlinear effects are important. Despite this, fully nonlinear three-dimensional
results are at present limited due to theoretical complexity and computational burden
(see Tsai & Yue 1996 for a review).

In this work, we apply the mixed-Eulerian–Lagrangian (MEL) high-order boundary
element method for fully nonlinear three-dimensional wave–wave and wave–body
interactions (described in Xue et al. 2001, hereafter Part 1) to investigate two nonlinear
wave–body problems of practical importance: (a) the generation of three-dimensional
ship bow waves; and (b) high-frequency ‘ringing’ loads on a surface-piercing vertical
cylinder in incident Stokes waves.

† Currently with Salomon Smith Barney, New York, USA.
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Steep bow waves are ubiquitous and prominent features of an advancing ship. The
modelling of such steep three-dimensional waves and their interactions with ship
bows is of importance to the prediction of wave resistance, deck wetness, and ship
motions. Existing studies of this problem are generally two-dimensional or quasi-two-
dimensional (e.g. Grosenbaugh & Yeung 1989; Maruo & Song 1994; Tulin & Wu
1996) typically based on strip-theory or slender-body approximations. The importance
of wave–body nonlinearity and three-dimensionality (e.g. upstream influence) for this
problem, however, cannot generally be ignored (see e.g. Raven 1993; Fontaine &
Faltinsen 1997). In this paper, we conduct time-domain fully nonlinear simulations
of three-dimensional bow waves of different ship hull geometries. To isolate the effect
of three-dimensionality, we first consider a canonical flared wedge bow and compare
three-dimensional MEL results to quasi-two-dimensional predictions based on the
slender-body approximation. For more realistic geometries, we study the Wigley and
Series 60 hulls and compare steady-state results of the nonlinear simulations to
available experimental bow-wave measurements, and contrast these to approximate
(two-dimensional and quasi-two-dimensional) calculations. Our simulations show that
upstream influence, not generally accounted for in the approximate theories, plays a
critical role in three-dimensional bow-wave formation even for relatively fine bows.

Large compliant offshore structures with high-natural-frequency low-damping res-
onances are often observed to be excited by high-harmonic nonlinear wave loads.
Such phenomena are termed ‘ringing’ and have been reported in a number of recent
studies (e.g. Davies, Leverette & Spillane 1994; Krokstad & Stansberg 1995; Chaplin,
Rainey & Yemm 1997). (Note that although ‘ringing’ phenomena are often observed
in irregular seas, in this paper we use the term ‘ringing’ to denote the response to
a high-frequency component of a regular wave field.) To evaluate the importance of
nonlinear diffraction effects to ringing excitation, frequency-domain (regular) pertur-
bation analysis can be extended to higher order. The extension to second order is now
well established (e.g. Kim & Yue 1989; Chau & Eatock Taylor 1992). The observation
that ringing often occurs at the third (or even higher) harmonic of the fundamental
incident frequency stimulated recent perturbation analysis at the third order. These
include the third-order diffraction theory of Faltinsen, Newman & Vinje (1995), who
made a further assumption of long incident waves; and Malenica & Molin (1995),
who solved the problem for arbitrary incident wavelength. Both theories apply (only)
to the case of a vertical circular cylinder in a regular (mono-chromatic) incident
wave. Faltinsen et al. (1995) and Malenica & Molin (1995) differ appreciably in
the magnitude of the third-order force except for very small incident frequency, but
markedly in the phase of that force. In addition to expected difficulties in extending
such theories to more general geometries, fully nonlinear effects for steep waves may
also limit the usefulness of such perturbation approaches (cf. figure 17). Given the
analytic complexity even at third order, extension to higher orders (which may be
called for) is formidable. Recently, Rainey (1995) refined Morison’s formula to include
third-order effects of the incident wave field. Chaplin et al. (1997) showed that this
simple model tends to substantially over-estimate the ringing wave excitation even
for a small cylinder.

Given the physical nature of this problem, a perhaps more efficacious approach is
to tackle the nonlinear wave–body interaction problem in the time domain directly
and then obtain the harmonic forcing of interest from the nonlinear steady-state force
history. In this direction, Ferrant (1996) developed a linear boundary-element method
based on the semi-Lagrangian formulation and applied it to study the problem of
wave diffraction of mild long waves by a bottom-mounted vertical cylinder. In this
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study, we perform a fully nonlinear time-domain simulation of the diffraction of
Stokes incident waves by a surface-piercing vertical cylinder. We obtain steady-state
time histories of the nonlinear wave loads on the cylinder from which high-harmonic
(ringing) force components are extracted using Fourier analyses. The results are
compared to available experimental measurements up to the third harmonic with
remarkable good agreement.

The rest of the paper is organized as follows. In § 2, the treatment of the pertinent
numerical issues in three-dimensional MEL simulations of fully nonlinear wave–body
interactions is described. In § 3, the study of three-dimensional ship bow waves is
presented. The simulation results of ringing loads and fully nonlinear wave run-up
on a vertical cylinder are presented in § 4. In § 5, conclusions are given.

2. Numerical method
The mixed-Eulerian–Lagrangian (MEL) method for fully nonlinear three-dimen-

sional wave–wave and wave–body interactions using quadratic boundary elements
is given in Part 1. The method is here extended to the study of nonlinear wave-
making/diffraction by surface bodies. We do not repeat here the overall formulation
of the mathematical problem or the computational methodology, but outline in this
section treatment of specific computational issues associated with nonlinear wave
interactions with surface-piercing bodies.

2.1. Double-node technique for intersections

In solving the boundary-value problem (BVP) using the quadratic-boundary-element
method (QBEM), a ‘double-node’ technique is adopted to treat the confluence of
different types of boundary conditions (at the intersection of free and body surfaces),
as well as the discontinuity of surface slopes (at body edges). In the MEL approach,
Dirichlet (D) and Neumann (N) boundary conditions (for the velocity potential)
are specified on the free surface (F) and body surfaces (B) respectively. At F–B
intersections, which may have surface slope discontinuities, we have a confluence of
boundary conditions of a D–N type. At such a confluence, the solution to the BVP
generally exhibits a weak singularity (Lewy 1950) which results in a degradation of
the numerical solution in the absence of special treatment. A robust treatment is to
use the double-node technique (e.g. Lin, Newman & Yue 1984; Dommermuth & Yue
1987) whereby both the D and N conditions are specified at F ∩ B. This requires
the specification of unknowns at the edges of the boundary elements, which QBEM
provides. Double nodes are also required on edges of the body surface B where slopes
are discontinuous. Because of the N–N boundary conditions, such nodes are denoted
as N–N double nodes. In some applications, such body edges intersect the free surface
(the bow stem is such an example), and the B–B–F point requires specification of
triple (N–N–D) nodes. For simplicity, all repeated nodes are hereafter referred to as
‘double-nodes’.

In the double-node technique, the nodes coincide but belong to different surfaces
possessing either different boundary conditions and/or different surface normals. Thus
the node belonging to a certain surface is otherwise treated like other (interior) nodes
of that surface. At aF∩B point, for example, three variables are in general involved:
the potential φ, and its derivatives ∇φ · n with respect to the normals (n) to F and B
respectively. A D–N double node there specifies the D and N boundary conditions
for φ and its derivative with respect to the B-normal at that point. Collocation
at that point provides a single equation for the unknown F-normal derivative of
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Intersections Double-node type Unknowns

F∩B D–N ∇φ · nF
Ship bow waves B∩B ∩F N–N–D ∇φ · nFB ∩B N–N φ

Nonlinear wave F∩B D–N ∇φ · nF
diffraction B∩B N–N φ

Table 1. Summary of the double-node types and the associated unknowns at the intersections of
the free-surface (F) and body (B) and body edges for the ship bow waves (§ 3) and nonlinear wave
diffraction (§ 4) problems. (D: Dirichlet; N: Neumann; and nF: unit normal of F.)

the potential. Similar multiple-node treatments of the N–N, D–N–N, N–N–N, . . . ,
types can be worked out for intersections involving F and (discontinuous slope) B
surfaces. In all cases, at each node point, there remains a single unknown involving
the potential or its derivative with respect to a specified normal, which can be solved
for by a collocation of the integral equation (equation (2.6) of Part 1) at that point.
For the two problems considered in this paper, ship-bow waves (§ 3) and nonlinear
wave loads on a vertical surface-piercing cylinder (§ 4), node types and unknowns at
the intersections involved are summarized in table 1. More details can be found in
Xue (1997).

2.2. Intersection updating

Proper updating of the free-surface intersection with a floating body during the MEL
simulation is of importance to the global accuracy of the simulation and critically to
the prediction of wave run-up and loads on the body.

For continuous flow, points on theF–B intersection line must, at all times, remain
on both (a) the body surface; and (b) the free surface. In MEL, the evolution of the
positions of these points is required. In a direct integration of the Lagrangian equation
(equation (2.4) of Part 1) for these new positions, neither (a) or (b) is guaranteed,
even for very small time steps. This leads (eventually) to a breakdown of the overall
simulation. To overcome this difficulty associated with surface-piercing bodies, we
develop a general scheme for updating the free-surface intersection points (applicable
in three dimensions).

To satisfy condition (a), we impose the velocity of an intersection point P , Vp, to
be always along the tangential direction, eτ, of the body surface. Here eτ denotes a
unit tangential vector on the body surface at P . For three-dimensional problems, eτ
is non-unique although either choice of the unit tangential vector will assure (a). In
practice, we choose eτ to be that which is closest to the Lagrangian velocity at that
point.

To satisfy condition (b), we now choose the magnitude of Vp to be given by

Vp =
∇φ · nF
eτ · nF (2.1)

where nF is the unit normal vector to the free surface at P . Note that the classical
Eulerian and Lagrangian forms of the intersection point velocities can be recovered
from (2.1) if we set eτ = (0, 0, 1) and ∇φ/|∇φ|, respectively.

The potential at the new position of the intersection point can be obtained by
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direct time integration:

dφ

dt
=
∂φ

∂t
+ Vp · ∇φ (2.2)

where d/dt is the substantial time derivative. For a moving body, the velocity of the
intersection point can be written in the form

Vp =
(∇φ−U ) · nF

eτ · nF eτ +U (2.3)

where U is the velocity of the body at P .

2.3. Far-field closure

For all but very short duration simulations, a satisfactory treatment of the far-field
closure is essential for wave–body interaction problems in an unbounded domain. In
three dimensions, where the energy density of the scattered wave must decrease with
radial distance, a far-field matching technique has been found effective and was used
by Dommermuth & Yue (1987) (in vertically axisymmetric flow problems). In the
present work, we develop two additional schemes using doubly periodic boundaries
and a sponge layer which are much simpler to implement.

Doubly periodic boundary conditions in the horizontal directions are implemented
readily using the doubly-periodic (Rankine) Green function (Part 1, § 2.4). The extent
of the computational domain is generally a function of the simulation duration –
the simulation should be stopped before scattered waves from fictitious ‘periodic’
bodies arrive. In practice, for a given simulation time, the size of the computational
domain is simply increased until the results in question no longer change. Examples
of such convergence results can be found in Xue (1997). In this paper, this technique
is applied to the problem of nonlinear wave diffraction by a vertical surface-piercing
cylinder (§ 4).

Another simple far-field closure scheme which avoids the added computational
effort associated with the evaluation of the doubly periodic Green function is the
use of a numerical sponge layer (see e.g. Nakos, Kring & Sclavounos 1993; Clément
1996). In the present three-dimensional implementation, we place a sponge layer in a
strip around the perimeter of the (rectangular) computational domain centred at the
body. Within the sponge layer, we introduce artificial linear damping terms into the
kinematic and dynamic boundary conditions on the free surface F:

Dx

Dt
= ∇φ− ν(x, y)(x− xI ), x ∈ F, (2.4)

Dφ

Dt
= 1

2
|∇φ|2 − z − ν(x, y)(φ− φI ), x ∈ F, (2.5)

where D/Dt is the Lagrangian (material) time derivative; xI and φI are the free-surface
position and velocity potential of the incident/ambient flow; and ν is an empirical
damping coefficient which is in general a function of space. In this paper, this scheme
is used in the calculation of ship bow waves (§ 3). Details of the implementation and
documentation of the effectiveness of this scheme can be found in Xue (1997).

2.4. Free-surface and body grid (re)generation

In the MEL approach, Lagrangian particles on the free surface tend to cluster in
regions of high flow gradients. Such clustering may lead to stronger ‘saw-tooth’
instability (which can be removed by smoothing), but more importantly, causes
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severe distortions of the boundary elements, which become critical for the three-
dimensional problem. Thus, in the absence of robust regridding of free-surface and
body boundary elements, MEL simulations involving all but the simplest geometries
in three dimensions rapidly break down.

To effectively resolve this problem, we extend the regridding algorithm applied by
Dommermuth & Yue (1987) for axisymmetric flows to fully three dimensions. Cubic
splines in both parametric directions are employed to create new sets of optimally
spaced (in arclength) grid points on the free surface and on the body. Such grid
regeneration in conjunction with updating of the free-surface body intersection line
is an essential feature of fully nonlinear simulations involving changing wetted body
surfaces. For optimal spacing in grid regeneration, we use elliptical generators with
controlling factors on the free surface and transfinite interpolations on the body.

2.5. Initial condition for the wave diffraction problem

In the fully nonlinear simulation of wave diffraction by a body, the prescribed incident
wave field is in general not compatible with the requisite (zero-flux) body boundary
condition. In the absence of an effective remedy, large transients are introduced at
initial time(s) which can lead to breakdown of the nonlinear simulation. This is
particularly critical for a surface-piercing body where errors tend to be concentrated
at the F–B intersection(s).

To resolve this difficulty, a number of treatments have been implemented and eval-
uated. These include: (i) positioning the body at ‘optimal’ (smallest normal velocity)
points in the incident field; (ii) introducing an initial modulation of the incident
velocity field near the body; (iii) applying artificial free-surface pressure forcings near
free-surface body intersections to suppress large initial surface disturbances; (iv) al-
lowing the body dimension to grow initially from a small value to the actual size; and
(v) allowing the body boundary to possess an initial permeability which gradually
vanishes.

Based on systematic tests (Xue 1997), we find that an effective scheme is obtained
using (v). For a fixed no-flux body, a time-varying body permeability is applied by
imposing the body boundary condition

φn(x, t) = C(t)

[
∂

∂n
φI (x, t)− Q(t)

]
, x ∈ B(t), (2.6)

where Q(t) is introduced to ensure (global) mass conservation and is given by

Q(t) ≡

∫ ∫
B(t)

φn(x, t)dS∫ ∫
B(t)

dS

. (2.7)

In (2.6), the time-dependent function C is chosen to vary smoothly from unity
(complete permeability) to zero (no-flux) over some time δT :

C(t) =

 cos2
( π

2δT
t
)
, 0 6 t 6 δT

0, t > δT .
(2.8)

In addition to (2.6), it is often also found useful to employ (i) by optimizing the initial
placement of the body with respect to the incident field. In our study of the fully
nonlinear diffraction of a truncated vertical cylinder (§ 4), for example, we apply (2.8)
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Figure 1. Sample QBEM discretization of a surface-piercing vertical truncated circular cylinder.
Only half of the symmetric (doubly periodic square) domain is shown.

with δT equal 1/4 of the incident Stokes wave period, and centre the cylinder initially
at a phase of the Stokes wave such that the horizontal velocity of the incident wave
at the cylinder surface is minimized at t ∼ δT . As is seen in § 4, this treatment is able
to minimize initial transient effects to produce reliable long time predictions.

2.6. Convergence tests

We present selected convergence results to illustrate the accuracy and performance
of the MEL high-order boundary-element method. Additional convergence tests are
given as part of § 3 and § 4, and extensive validation results can be found in Xue
(1997).

A key factor in the overall effectiveness of MEL is the efficiency and accuracy
of the boundary-value problem solution. We consider a mixed Dirichlet–Neumann
boundary-value problem and calculate the maximum error of the QBEM (involving
double-node treatment of D–N and N–N intersections) as a function of discretization
size. We consider a surface-piercing truncated vertical circular cylinder in a square
doubly periodic computational domain. Figure 1 shows a typical discretization using
quadratic (iso-parametric) surface elements.

Using a known harmonic solution (with the amplitude of O(1)), we impose the
Neumann boundary condition on the cylinder and the Dirichlet condition on the
free surface and obtain from the solution the maximum errors on the Neumann and
Dirichlet surfaces. Figure 2 plots the convergence of these errors as a function the
typical grid size ∆. The convergence rate of the maximum error with ∆ is shown
to be faster than cubic for the potential (Neumann surface) but somewhat less so
for its normal derivative (Dirichlet surface). Not indicated in figure 2, but seen in
the numerical results, is the fact that the maximum errors generally occur at the
Dirichlet–Neumann boundary intersection.

3. Ship bow waves
We investigate in this section the development of three-dimensional ship bow waves

using fully nonlinear MEL simulations. Started from rest to constant forward speed in
the time-domain simulations, convergent steady-state bow wave profiles are computed
for the flared wedge, Wigley, and Series 60 hulls. For the latter two hulls, the present
fully nonlinear predictions are validated against available experiments.

An issue of some interest is the importance of three-dimensionality and upstream
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Figure 2. Maximum errors (emax) of the QBEM boundary-value problem solution involving mixed
Neumann–Dirichlet (N–D) boundary conditions as a function of (typical) grid size ∆. The maximum
errors in the potential on the N surface (�), and in its normal derivative on the D surface (◦) are
plotted separately. The average slopes of these log-log convergence curves are −2.6 and −3.4 for
the D and N surfaces respectively.

influence in the development of bow waves. This is evaluated by comparing the present
three-dimensional results to those obtained using a nonlinear slender-body quasi-two-
dimensional approximation. In the quasi-two-dimensional approach, a slender-body
assumption is made to reduce the three-dimensional problem to two-dimensional
(parabolic) wave-making problems in a space-fixed reference (y, z)-plane normal to
the direction (−x) of the ship motion. A ship bow advancing through this plane
is modelled as a two-dimensional wave-maker with its geometry/velocity given by
the time-changing bow cross-section in that plane. Use of this quasi-two-dimensional
approach has been popular since Chapman (1975) (e.g. Chapman 1976; Yeung &
Kim 1981; and recently and specifically for the bow wave problem by e.g. Maruo &
Song 1994; Tulin & Wu 1996).

We implement the nonlinear quasi-two-dimensional method in the present work
by applying the Cauchy-integral MEL approach of Vinje & Brevig (1981) to solve
the two-dimensional wave-making problem. The method is very similar to that in,
e.g. Dommermuth et al. (1988), and has been validated systematically in terms of
convergence with space–time discretizations and conservation of global quantities.

For the fully nonlinear three-dimensional simulation, the ship is located at the centre
of a rectangular computational domain, length L and width W , which moves with the
ship forward speed. For our simulations, we use typically L/Lh ∼ 2 and W/Lh ∼ 1,
where Lh is the length of the ship hull. To minimize reflection from the boundary of
the computational domain, a region of numerical sponge layer (i.e. damping zone) is
placed around the perimeter of the domain. With judicious choices of the width of
the damping zone (typically O(1/6) of L and W along the transverse and longitudinal
edges), and the damping parameter ν(x) therein (typically a quadratic variation with
maximum value at the outer edges), it is shown that effective damping of outgoing
waves can be achieved with negligible effect on the steady-state bow wave results.
Details can be found in Xue (1997).

Our interest is in the steady-state bow wave, and effects of initial transients are
minimized by allowing a varying forward speed V (t) which increases gradually from
zero to its steady value U. An acceptable choice is a sin2 variation of V (t)/U over
a period of O(0.2)Lh/U. The final results are checked to confirm that they are



Three-dimensional wave–wave and wave–body interactions. Part 2 49

independent of changes in the chosen V (t). For the time integration, dynamic time
step with Courant number Cn = 0.2 and maximum time-step size ∆tmax = 0.01Lh/U
is used.

3.1. Flared-wedge bow

As an initial study, we consider a canonical three-dimensional flared (hyperbolic)
wedge-shaped bow geometry which possesses: (i) a simple closed-form geometric
specification; (ii) a simple (closed-form) linear slender-body solution (Ogilvie 1972);
and (iii) a single parameter quantifying three-dimensionality for given forward speed.
The flared-wedge geometry is given by

|y| = x(1 + z/D) tan α, z/D > −1, (3.1)

where x, y, z are the longitudinal, transverse and vertical coordinates. The flared bow
is characterized by a single dimension D which is the (constant) still-water draught. In
(3.1), α is half the bow-entry angle at the still-water level (z = 0) and is the parameter
which measures the three-dimensionality of the bow. Note that (3.1) has a flare given
by a longitudinally varying dead-rise angle Θ(x) = arctan[(x/D) tan α].

For (fine) wall-sided wedged-shaped bows, an analytic solution is available in the
context of linearized slender-body theory (Ogilvie 1972). For flared-wedge bow, the
closed-form solution can be generalized. Specifically, we obtain the wave height on
the bow to be

Z(X) ≡ η(X)

αFDD
=

2

π

∫ ∞
0

µ−5/2(µ− 1 + e−µ) sin(µ1/2X)dµ, (3.2)

which is a universal curve for Z(X), where X ≡ x/(FDD), and the Froude number
based on D is given by FD ≡ U(gD)−1/2 with g being the gravitational acceleration.

For the (nonlinear) quasi-two-dimensional theory, the quasi-two-dimensional initial
boundary-value problem for the velocity potential ψ(y, z; t ≡ x/U), say, can be stated
in a straightforward way. For this geometry, the quasi-two-dimensional problem is
that of a flap-type wave-maker, hinged at z = −D, with normal velocity given by

∂ψ(y, z, t)

∂n
= U tan α(1 + z/D), (3.3)

to be specified on the instantaneous hull position y = t(1 + z/D)U tan α. Since U
and α do not appear elsewhere in the quasi-two-dimensional problem (except in
the scaling of x = Ut), it is interesting to note that, unlike in the actual three-
dimensional problem, the forward speed and three-dimensionality parameters do not
appear independently but only in the combination U tan α (or the dimensionless form
FD tan α) in the quasi-two-dimensional formulation. Furthermore, since the quasi-
two-dimensional problem does not admit upstream influence (ψ ≡ 0 at t = 0), the
two-dimensional wave-maker problem with impulsive start (3.3) has a singularity at
the free surface and wave-maker intersection at initial time t ≡ x/U = 0+ (see e.g.
King & Needham 1994). Direct numerical solution of this problem, as expected, does
not converge with respect to discretization.

Figure 3 plots the quasi-two-dimensional results for the wave profiles on the flared-
wedge bow obtained using different spatial discretizations for different values of the
parameter FD tan α. As discussed above, the numerical results do not converge as
(average) discretization size ∆` is decreased but becomes increasingly steeper at the
bow. In fact they eventually diverge as ∆` → 0. Since downstream values of ψ are
obtained as an initial-value problem, the profiles do not converge for any x. Such
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Figure 3. Wave profiles on a flared-wedge bow obtained using quasi-two-dimensional simulations
with (average) spatial discretization size ∆`/D for FD tan α = 0.08: ∆`/D = 0.04 (- - -), ∆`/D = 0.025
(— · —); and FD tan α = 0.16: ∆`/D = 0.04 (· · ·), ∆`/D = 0.025 (– – –). For comparison, the
linearized slender-body theory result (3.2) (——) is also shown.

0.10

0.05

0 4 5

x/D

0.15

è/D 0

–0.05

–0.10

(a)

0.10

0.05

0 3 4 5

x/D

0.15

0

–0.05

–0.10

(b)

21321

Figure 4. Fully-nonlinear three-dimensional MEL simulation results of the evolution of the wave
profile on a flared-wedge bow for (a) FD = 1.0 and tan α = 0.1 at Ut/D = 0 (· · ·), 3.0 (- - -), 4.0
(— · —), 4.5 (– – –), and 5.0 (——); and (b) FD = 2.0 and tan α = 0.05 at Ut/D = 0 (· · ·), 3.0
(- - -), 4.0 (— · —), 5.0 (– – –), and 6.0 (——).

results can be rendered convergent by introduction of artificial physical or numerical
effects into the problem. This is discussed in § 3.2.

For comparison, the linearized slender-body theory result (3.2) is also plotted in
figure 3. In normalized coordinates, the theoretical result is independent of FD tan α.
For small X, where the quasi-two-dimensional profiles are close, (3.2) provides a
correct asymptotic behaviour, Z ∼ (2X/π)(1 − γ − 2 logX) as X → 0, where γ =
0.577 . . . is Euler’s constant. For larger X, the linearized and nonlinear (quasi-two-
dimensional) slender-body results differ qualitatively even for a small value of FD tan α.
Comparing the linearized and nonlinear profiles, it is clear that nonlinearity plays an
important role even for relatively small values of FD tan α.
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Figure 5. Comparison of the steady-state wave profiles on a flared wedge-shaped bow among
fully nonlinear three-dimensional computations with FD = 1 and tan α = 0.1 (——) and FD = 2
and tan α = 0.05 (– – –); quasi-two-dimensional results for FD tan α = 0.1 (— · —), and linearized
slender-body theory (· · ·).

Full three-dimensional nonlinear simulations using MEL QBEM are also obtained
(for these three-dimensional simulations, we close the body at Lh/D = 8 with a
streamlined aft body). To isolate the three-dimensional effect, we consider two different
cases which have the same parameter value FD tan α = 0.1 but different FD and α
— Case 1: FD = 1 and tan α = 0.10; and Case 2: FD = 2 and tan α = 0.05. Figure
4 shows the time evolution of the bow wave profiles which monotonically approach
steady state. In both cases, steady state is reached up to x(FDD)−1 ∼ O(1) after time
Ut/D ∼ O(4).

Figure 5 compares the bow wave profile predictions for Cases 1 and 2 among steady-
state result of fully nonlinear three-dimensional simulation, nonlinear quasi-two-
dimensional simulation, and linearized slender-body theory. As pointed out earlier,
since FD tan α is constant, the quasi-two-dimensional theory predicts the same profile
for different FD (in the normalized X coordinate). For the full three-dimensional
problem, different combinations of FD and tan α, as expected, lead to qualitatively
different bow wave profiles as a function of X. Another qualitative difference between
three-dimensional and slender-body theories is the finite wave height at the bow stem
predicted by the former but absent in the two-dimensional theories. Quantitatively,
the nonlinear slender-body calculation tends to over-predict the maximum bow wave
height (and hence the initial profile slope) but otherwise obtains a comparable
magnitude further downstream. When nonlinearity is ignored, the linearized theory is
inadequate and underestimates the overall wave amplitude significantly.

The nonlinear three-dimensional prediction of finite bow stem wave height can
be compared to the modified slender-body theory of Fontaine & Faltinsen (1997)
which accounts for (linear) upstream effects in the neighbourhood of the bow stem.
For (FD, tan α) = (1, 0.1) and (2, 0.05), Fontaine & Faltinsen’s (1997) theory obtains
(for wall-sided wedge bow) bow stem wave heights of 0.032D and 0.016D respec-
tively. These are to be compared to the fully nonlinear three-dimensional predic-
tions in figure 5 of 0.038D and 0.017D respectively. As expected, the discrepancy
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Figure 6. Comparison of transverse bow wave profiles, around a flared-wedge hull started smoothly
from rest, obtained using: quasi-two-dimensional (left) and three-dimensional (right) nonlinear
simulations for (x/D,Ut/D) = (a) (0.36, 1.28); (b) (1.02, 2.00); and (c) (2.64, 3.62). The hull reaches
a constant speed of FD = 2 after Ut/D = 2.

is smaller for smaller α. These comparisons underscore the importance of account-
ing for three-dimensional effects even for thin (wedge) bows (at least near the bow
stem).

An interesting bow wave development problem that can be considered in the
present context is that associated with the transient, say start-up, motion. In this case,
the quasi-two-dimensional formulation for this bow does not possess a singularity at
the stem and a convergent result can be obtained. We consider, for illustration, the
case tan α = 0.25 and FD = 2 which is reached smoothly over a period of Ut/D = 2.

Figure 6 compares the fully nonlinear three-dimensional results with the quasi-two-
dimensional solutions for the transverse bow wave profiles at selected positions and
times. At early time, figure 6(a) for Ut/D = 1.28, the quasi-two-dimensional result
over-predicts the wave height on the hull (cf. figure 5). At later times (figure 6b),
however, the three-dimensional hull wave height exceeds the quasi-two-dimensional
prediction. Some time later, in the absence of three-dimensional interactions, the quasi-
two-dimensional bow wave soon overturns (figure 6c), while the three-dimensional
wave height continues to increase without breaking. (The three-dimensional bow wave
eventually reaches much higher up the hull and finally breaks at an aft location where
the dead-rise angle Θ(x) of the flared wedge becomes large.) Thus, transient quasi-
two-dimensional computations tend to over-predict (predict earlier) wave breaking
and as a result under-predict the maximum bow wave height attained. This appears
to be true under rather general conditions (see e.g. Part 1, figure 11).
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Figure 7. Quasi-two-dimensional simulation results of the bow wave profiles on a Wigley hull,
Fr = 0.316, with bow stem rake angle β = (a) 5◦ and (b) 2.5◦; obtained using (average) discretization
size ∆`/Lh = 0.001 (— · —); 0.0005 (- - -); and 0.00025 (——).

3.2. Wigley and Series 60 ship hulls

We now consider more realistic ship hulls for which experimental measurements of
bow waves are available for comparison.

3.2.1. Wigley hull

The Wigley hull geometry is specified by

y

B/2
=

4x

Lh
(1− x/Lh)[1− (z/D)2], 0 6 x 6 Lh,−D 6 z 6 0, (3.4)

with length, beam and draught Lh, B and D respectively. For illustration, we consider
the case given by B/Lh = 0.1 and D/Lh = 0.0625.

As in the flared-wedge case, quasi-two-dimensional results for the steady-state bow
wave do not converge as a result of the impulsive wave-maker problem singularity
at small time. An interesting approach to obtain a convergent result for this case
is proposed by Maruo & Song (1994) (see also Tulin & Wu 1996) who introduced
a small (typically 5◦) artificial rake angle in the (otherwise vertical) bow stem. We
implement this treatment to obtain convergent predictions (as a function of finite rake
angle) and compare these to three-dimensional results to assess the practical utility of
the former and the importance of three-dimensionality for bow waves on such hulls.

Figure 7 shows the convergence of the quasi-two-dimensional results for the bow
wave profiles with ∆` for different (fixed) rake angles β. The Froude number is
Fr ≡ U(gLh)

−1/2 = 0.316. For β = 5◦, figure 7(a), a convergent value of the maximum
wave height is obtained. When β is reduced, figure 7(b) for β = 2.5◦, there is no
evidence of convergence even for very small ∆`. Significantly, as shown in figure 8,
the quasi-two-dimensional predictions turn out to be sensitive to the (small) values
of β.

We obtain steady-state bow wave profiles for this hull using a three-dimensional
MEL simulation. A compilation of computational and experimental results for Fr =
0.316 is shown in figure 8. The convergence to steady state of the fully nonlinear
three-dimensional results (obtained using O(300) and O(3000) quadratic elements
on the hull and free surface respectively) is obtained readily for x/Lh ∼ 0.15 after
tU/Lh ∼ O(0.3). These compare favourably with experimental data with less than
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Figure 8. Comparison of computed and measured steady-state bow wave profile on a Wigley hull,
Fr = 0.316. The results shown are: three-dimensional MEL profiles at tU/Lh = 0.25 (- - -), 0.30
(– – –), 0.35 (——); steady Dawson method calculation of Raven (1993) (4); quasi-two-dimensional
slender-body theory computations obtained with (∆`/Lh, β) = (0.0005, 0◦) (· · ·), (0.00025, 2.5◦)
(— · —), (0.00025, 5◦) (— · · —); and experimental measurements of Miyata (1980) (•).

5% discrepancy for the predicted peak wave height. The bow wave amplitude at the
stem is also predicted well with differences likely to be attributable to the presence of
spray in the physical experiment. The present results also compare well to ship wave
computations which assume steady state. As an example, a result of Raven (1993)
obtained using a (steady) Dawson method is plotted in figure 8. We remark that
compared to the steady-state approaches, the present time-domain scheme is more
powerful since it can simulate the complete transient development of the (steady and)
unsteady bow waves till breaking (cf. figure 6).

The quasi-two-dimensional results in figure 8 show the lack of convergence as
β → 0 (the results are convergent with grid size ∆` only for β > 5◦). For the ‘typical’
value of β = 5◦ (Tulin & Wu 1996), the prediction is acceptable only for larger
distance from the stem. The importance of three-dimensional effects is thus evident
even for this unusually slender hull (B/Lh = 0.1).

3.2.2. Series 60 hull

Finally we consider a more realistic hull geometry, a Series 60 (Cb = 0.6) hull.
For this hull, apparent discrepancies regarding details of the flow near the bow are
reported in a recent comparison among experimental data and different computational
methods (cf. Ship Research Institute 1994).

In the fully nonlinear three-dimensional MEL simulation, we use O(200) and
O(2000) QBEM elements on the hull and free surface, respectively. In the simulation,
the hull is shortened to 0.5Lh of which the forward 0.2Lh replicates exactly the bow of
the Series 60 hull in order to reduce computational cost. Through convergence tests,
this is shown not to affect the accuracy of the bow wave results. For Fr = 0.316, the
steady state of the wave in the bow region is reached after tU/Lh > O(0.5). Figure 9
plots the three-dimensional wave field around the hull at tU/Lh > O(0.5) = 0.6.
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Figure 9. The (bow) wave field around a Series 60 (Cb = 0.6) hull with Fr = 0.316 at tU/Lh = 0.6.
The wave field is symmetric with respect to the centre-plane of the hull. The dashed line denotes the
still water line. The result is obtained using the fully nonlinear three-dimensional MEL simulation.
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Figure 10. Comparison of computed and measured steady-state bow wave profile on a Series 60
(Cb = 0.6) hull, Fr = 0.316. The results shown are: (converged) three-dimensional MEL profile at
tU/Lh = 0.6 (——); RANS computations of Tahara & Stern (1994) (- - -); quasi-two-dimensional
slender-body theory computations obtained with ∆`/Lh = 0.005 (— · —); and experimental mea-
surements of Stern et al. (1995) (•).

The steady-state bow wave profile is shown in figure 10. For comparison, the
latest measurement data for this case (Stern, Longo & Zhang 1995) are plotted.
The overall good comparison is remarkable. The present potential flow formulation
does not contain some of the physics present in the experiments, some of which
are modelled in Reynolds-averaged Navier–Stokes (RANS) computations. In figure
10, we plot, for comparison, a steady RANS result of Tahara & Stern (1994). The
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overall comparison is acceptable. Despite the presence of viscous effects in RANS,
it somewhat over-predicts the maximum wave height relative to the experiments and
the MEL simulations.

The present Series 60 hull possesses a natural rake angle of β ≈ 6◦ which reduces
the convergence difficulty of the quasi-two-dimensional simulations. The convergence
of quasi-two-dimensional results with grid size ∆` is nevertheless very slow (see Xue
1997 for details). Figure 10 contains a quasi-two-dimensional result (using ∆`/Lh =
0.0005, which has more or less converged over the domain shown). As expected, the
predictions are not satisfactory near the bow stem. The poor performance further
downstream (in comparison to figure 8, for example), however, is notable and may
indicate a limit of validity of the slender-body theory with respect to hull geometry.

4. High-harmonic wave excitations on a surface-piercing cylinder
We consider the fully nonlinear three-dimensional wave diffraction by a surface-

piercing body in a Stokes incident wave. Our main interest is the quantification of the
higher-harmonic wave diffraction forces which may be associated with high-natural-
frequency resonant excitations or ‘ringing’ of large compliant offshore structure (e.g.
Davies et al. 1994; Krokstad & Stansberg 1995).

To be specific, we perform a fully nonlinear three-dimensional MEL simulation of
the diffraction of an exact (two-dimensional) Stokes wave train (Schwartz 1974) by a
surface-piercing vertical truncated circular cylinder radius R and (still water) draught
D. The Stokes wave has wavelength λ = 2π/k, fundamental period T = 2π/ω, and
steepness kA. We consider the initial-value problem (cf. §2.5) to obtain the nonlinear
(horizontal) force history F(t). The simulations are continued until (limit-cycle) steady
state F(t) is obtained from which we obtain the harmonic force amplitudes and phases
by Fourier analysis.

The nonlinear force F(t) is computed by direct integration of the pressure on the
instantaneous wetted body. The pressure is given by Bernoulli’s equation which can
be written in a form following the moving grid:

p = −ρ
[

dφ

dt
+
(

1
2
∇φ− Vg) · ∇φ+ gz

]
, (4.1)

where we follow the grid-fixed potential φ, with grid velocity given by V g . (An
alternative approach which solves the BVP again to directly obtain ∂φ/∂t in the
Bernoulli equation is also implemented as a check. The results are almost identical.
Details are in Xue 1997.)

The approach to steady state of the normalized complex amplitudes of the harmonic
components is monitored by using Fourier integration over moving time:

f(0)(t) = (kA)−2 1

T

∫ t+T

t

F(τ)dτ, (4.2)

f(m)(t) = (kA)−m
2

T

∫ t+T

t

F(τ)eimωτdτ, m = 1, 2, . . . , (4.3)

where the leading-order magnitudes of the harmonics are factored out. The amplitude
of f(m)(t) is simply |f(m)(t)|, while its phase (relative to the incident wave) is

θ(m)(t) ≡ 1

m

{
arg[f(m)(t)] + 2nπ

}
, m = 1, 2, . . . , n = 0,±1,±2, . . . . (4.4)
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Figure 11. Time history of the nonlinear longitudinal force F(t) on a vertical circular cylinder in
Stokes incident waves (kA = 0.3, kR = 0.3, D/R = 3). Three-dimensional MEL simulations are
obtained using Nc = 16 (——) and 24 (- - -) nodes along the circumference of the cylinder.

4.1. Convergence tests

To establish convergence of our simulations and ultimately the reliability of the high-
harmonic force predictions, extensive numerical tests are performed (see Xue 1997).
For illustration, we present selected results for a case with kA = 0.3, kR = 0.3 and
D/R = 3. For spatial discretization, we use Nc × Nz QBEM nodes on the vertical
cylinder surface. With Nz = Nc/2, and accounting for elements on the cylinder bottom,
we have a total of 9N2

c /64 (9-node) quadratic elements on the body surface. We use a
doubly periodic computational domain of length L/λ = 1 and width W/L = 0.6 (the
total number of free-surface quadratic elements is approximately 0.006N2

c LW/R2).
For time evolution, we use dynamic time stepping with Cn = 0.2 and ∆tmax = T/100.
Due to the transverse symmetry of the problem, only half of the computational
domain and cylinder are used (see figure 1).

All our simulations are checked for conservation of mass and energy. For two
different discretizations Nc = 16 and 24, total mass/energy (normalized by their initial
values) are conserved to within O(10−6)/O(10−3) and O(10−7)/O(10−4) respectively.
The conservation of mass, in particular, validates the treatment of the diffraction
problem associated with (2.6).

Figure 11 shows the time history F(t) of the longitudinal force on the cylinder
obtained using Nc = 16 and 24. We note the absence of transients at small time and
the apparent approach to a limit cycle in t/T ∼ O(1) (simulation time tS = O(2T ),
cf. (4.3)).

The convergence of the force harmonic amplitudes (4.3) with (simulation) time
is of primary interest. This is shown in figure 12 for the amplitudes and phases
for m = 0, 1, 2, 3, 4 obtained using two different spatial discretizations Nc. Generally
speaking, steady-state values are reached earlier for lower-order harmonics as is
convergence with Nc.

4.2. Numerical predictions of harmonic wave loads

Our main interest is to predict the (steady-state) harmonic force amplitudes/phases
using fully nonlinear time-domain (MEL) simulations. In particular, we seek to
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Figure 12. Time evolutions of the harmonic components of the nonlinear longitudinal force F(t) on
a vertical circular cylinder in Stokes incident waves (kA = 0.3, kR = 0.3, D/R = 3): (a) amplitudes
|f(m)|(t), and (b) phases θ(m)(t) for harmonics m = 0, 1, 2, 3, 4. Three-dimensional MEL simulations
are obtained using Nc = 16 (——) and 24 (- - -) nodes along the circumference of the cylinder.

obtain predictions up to third harmonic m = 3, for which experimental (ringing
force) data are available. For the regular (exact) Stokes incident waves, we study
three wavelengths (relative to body dimension) given by kR = 0.22, 0.29 and 0.39;
and three wave amplitudes to wavelength ratios: kA = 0.130, 0.148 and 0.20 (A/R
varies from 0.34 to 0.91). (These particular choices of parameters are motivated by
the high-harmonic force measurements of Krokstad & Stansberg 1995.)

Based on convergence considerations such as those in § 4.1 (more extensive con-
vergence results are in Xue 1997), we use Nc = 24, and continue simulations up to
tS = O(5T ). With this tS , a (doubly periodic) computational domain size L = 3λ and
W = 1.5λ is found to be sufficient. With these computational parameters, for all cases,
we conserve relative mass and energy to within O(10−7) and O(10−4) respectively; and
expect convergence in f(m) to less than O(1%) for m = 0, 1 and 2; and well within
O(5%) for m = 3.

The result of a typical fully nonlinear three-dimensional simulation (kR = 0.39
and kA = 0.20) is shown in figure 13 which plots the instantaneous (t/T = 1.34)
elevation contours for the total and the diffracted wave fields. At this instant, the
up-wave (θ = π) run-up reaches its maximum value. Note that the diffracted wave
amplitude is large in the near vicinity of the body where the maximum local (total)
wave steepness reaches about twice that of the incident wave.

Figure 14(a) plots the instantaneous total wave run-up on the cylinder correspond-
ing to figure 13. The fully nonlinear MEL result is compared to that obtained using
linearized theory (e.g. Mei 1983). For reference, the (nonlinear) Stokes incident wave
run-up is also plotted. For this incident wave steepness (kA = 0.2), the maximum
nonlinear run-up is ∼ 80% higher than the incident wave. Thus, the nonlinearity of
the problem is significantly augmented by the diffraction effect. In contrast, the lin-
earized result underestimates the maximum diffracted wave amplitude by more than
a factor of two. At this instant, the diffracted (total minus incident) wave amplitude
is much smaller on the downstream side of the cylinder (cf. figure 13). This is found
to be generally true throughout the wave period.

The above result for wave diffraction is, of course, dependent on the relative
wavelength kR. Figure 14(b) plots the fully nonlinear wave run-up on the cylinder
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more colour contrast) the diffracted wave fields for the fully nonlinear interaction of an exact Stokes
wave with a truncated vertical circular cylinder (D/R = 3, kR = 0.39, kA = 0.20). The incident wave
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(a)

è/A

(b)
2.0

3
õ/π

1.5

1.0

0.5

0 1 2 3

1.0

0.5

0 1 2

0.0

–0.5

1.5

2.0

õ/π

Figure 14. Instantaneous wave run-up (corresponding to maximum height on the up-wave point
θ = π) on a truncated vertical circular cylinder (D/R = 3) in Stokes incident waves. (a) kR = 0.39,
kA = 0.2 for: fully nonlinear MEL results (——); linearized theory (— · —); and incident Stokes
wave (- - -). (b) Fully-nonlinear MEL results for (kR, kA) = (0.29, 0.1) (· · ·); (0.29, 0.2) (– – –);
(0.39, 0.1) (- - -); (0.39, 0.2) (——); (0.50, 0.1) (— · —); and (0.60, 0.1) (— · · —).

for a range of kR (and different kA). As expected, the diffraction effect increases
markedly as kR increases (from small values). Significantly, in this range of kR, the
diffracted wave amplitude, and hence nonlinearity, increases more due to increasing
kR than kA (compare e.g. the cases (kR, kA) = (0.29, 0.2) versus (0.6, 0.1)).
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Figure 15. Time evolution of the magnitude of the harmonic components, |f(m)|, m = 0 (— · —),
1 (– – –), 2 (- - -) and 3 (——), of the nonlinear longitudinal force F(t) on a vertical circular cylinder
in Stokes incident waves (kR = 0.22, kA = 0.133, D/R = 3).

|f(1)|/(ρgR3) |f(2)|/(ρgR3)

kR = 0.22 kR = 0.39 kR = 0.22 kR = 0.39

MARINTEK 13.64 11.07 10.85 3.04
MEL 13.41 11.18 12.97 2.87
KY 13.28 10.99 14.86 4.38
FNV 13.93 11.31 16.64 9.85

Table 2. Comparisons of the first- and second-harmonic force amplitude |f(1)| and |f(2)| on a trun-
cated vertical cylinder (D/R = 3) among experimental measurements (Krokstad & Stansberg 1995,
MARINTEK), fully nonlinear (MEL) simulations, second-order frequency-domain (axisymmetric)
computations (Kim & Yue 1989, KY), and (frequency-domain) small-body asymptotic theory of
Faltinsen et al. (1995, FNV). For MARINTEK and MEL, kA = 0.133 and 0.148 for kR = 0.22 and
0.39 respectively.

First- and second-harmonic forces

To provide further validation of our predictions, we obtain first- and second-
harmonic force amplitudes and compare these to existing theories and experiments.
Figure 15 shows the approach to steady state of the harmonic amplitudes (m =
0, 1, 2, 3) for the present problem (with kR = 0.22, kA = 0.133). At t/T = O(3.5), the
(normalized) coefficient |f(1)| has converged to less than 1%, while |f(2)| exhibits a
small oscillation of less than 2% amplitude.

Table 2 shows the comparisons of our predicted |f(m)|, m = 1, 2 (MEL) with
experimental measurements (Krokstad & Stansberg 1995, hereafter MARINTEK),
second-order frequency-domain (axisymmetric) computations (Kim & Yue 1989, here-
after KY), and the (frequency-domain) small-body asymptotic theory of Faltinsen et
al. (1995, hereafter FNV).
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kR = 0.22 kR = 0.29 kR = 0.39

MARINTEK 0.27 0.48 0.50
MEL 0.33 0.47 0.50
FNV 0.30 0.51 0.95
MM 0.28 0.52 0.97

Table 3. Comparisons of the third-harmonic force amplitude |f(3)|k3/(ρg) on a truncated vertical
cylinder (D/R = 3) among experimental measurements (MARINTEK); fully nonlinear (MEL)
simulations; small-body asymptotic theory (FNV); and the third-order (frequency-domain) theory
(MM). For MARINTEK and MEL, kA = 0.133, 0.130 and 0.148 for kR = 0.22, 0.29 and 0.39
respectively.

It should be pointed out that the fully nonlinear time-domain prediction differs
from frequency-domain results (even for the first harmonic) because the former, in
general, contains all other nonlinear interactions also operating at this harmonic (cf.
e.g. Liu, Dommermuth & Yue 1992). In this sense, the frequency-domain result of
harmonic m is merely the leading-order term of the fully nonlinear mth harmonic
amplitude. With this understanding, the differences between MEL and KY predictions
are expected to increase with nonlinearity. Thus the differences between MEL and
KY in table 2 increase with kA and kR, as expected.

Comparing MEL to MARINTEK, the values for |f(1)| agree to about 1 ∼ 2%, while
for |f(2)| the discrepancies are in the range 6 ∼ 19%. In contrast, FNV substantially
over-predicts the harmonic amplitudes in all cases, with the over-prediction increasing
rapidly with increasing kR. This is not unexpected since FNV is formally a low-kR
and low-kA theory with a range of validity for the wavelength likely to be lower than
the kR range considered here (see e.g. Malenica & Molin 1995).

Third-harmonic force

This is the case of main interest in the context of ringing excitations. Table 3
compares the values of |f(3)| obtained from: fully nonlinear (MEL) simulations;
experiments (MARINTEK); small-body asymptotic theory (FNV); and the third-
order (frequency-domain) theory of Malenica & Molin (1995, hereafter MM). We
remark here that both FNV and MM are (so far) available strictly only for the
uniform vertical circular cylinder geometry.

Considering that the quantities in question are third order (in wave steepness), the
present MEL results compare remarkably well with the experimental measurements
of MARINTEK with the differences between the two within O(2%) for the shorter
incident wavelengths kR = 0.29 and 0.39, and O(20%) for the longer wavelength
kR = 0.22. In the physical experiment, the lower kR ∼ 0.22 case has an associated
Keulegan–Carpenter number Kc ≡ πA/R ∼ 2, and non-potential flow effects may
play a (minor) role. To assess this, we add a Morison-type quadratic drag term to
F(t):

FD(t) = F(t) + ρRCD

∫ η

−D
U|U|dz, (4.5)

where CD is an empirical drag coefficient, and U = U(z, t) is the (nonlinear) incident
wave field velocity on the central axis of the cylinder. With CD = 1, we obtain
|f(3)
D |k3/(ρg) = 0.291 which halves the original difference and is now ∼ 12% above
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Figure 16. Phases (relative to incident wave) of the longitudinal force harmonics on a vertical
circular cylinder (D/R = 3) in Stokes incident waves: (a) kA = 0.133, kR = 0.22; and (b) kA = 0.130,
kR = 0.29. The results shown are: fully nonlinear MEL θ(m)(t), m = 1 (– – –); 2 (- - -); 3 (——);
and frequency-domain predictions of θ(3) from MM and FNV.

the measurement value. For the cases with KR = 0.29 and 0.39, Kc = 1.4 and 1.2
respectively and non-potential flow effects are much less important.

The frequency-domain perturbation theories compare reasonably well to each other
and acceptably so relative to MEL and experiments for the smaller kR cases. As kR
increases, FNV and MM increasingly over-predict |f(3)|, and, for the kR = 0.39
case we studied, they exceed measurements and fully nonlinear computations by
almost a factor of 2. As noted earlier, fully nonlinear time-domain MEL differs from
frequency-domain perturbation theories because, in addition to the leading-order
term(s) perturbation theories predict, MEL contains also higher-order nonlinear
contributions at a given harmonic. Such higher-order contributions increase with
nonlinearity. From earlier results (cf. figure 14), we note that nonlinearity increases
due to two independent factors: increase in the incident wave steepness kA, and
increase in the (local) diffracted wave steepness which generally increases with the
diffraction parameter kR. Our computations and experimental measurements indicate
that, for this range of kR, the latter factor is dominant. This explains the substantially
larger discrepancies in the frequency-domain perturbation results for larger kR.

For the range of kR in table 3, the FNV and MM predictions of |f(3)| agree
reasonably well with each other. As will be shown in figure 17, appreciable differences
in |f(3)| appear for kR > 0.4. This deviates somewhat from the results of MM which
show a large discrepancy between FNV and MM (in the contribution associated with
the product of the first- and second-order potentials) even for very small kR (50%
difference for kR ∼ 0.035).

The significant difference between FNV and MM, however, is the prediction of the
phase θ(3) of f(3). According to FNV, θ(3) = π/6 + 2nπ/3 (for some integer n) and
is independent of kR. As expected, θ(3) from the complete (arbitrary kR) third-order
MM varies with kR. Figure 16 shows the time histories of θ(m), m = 1, 2, 3 from fully
nonlinear MEL simulations for two values of kR (see Xue 1997 for additional cases).
For the simulation time used, the time histories have long approached their limit-cycle
values. These values can be compared to the (frequency-domain) predictions of FNV
and MM, which are also shown. The present fully nonlinear predictions tend to
agree with MM. The comparison is better for lower kR values (as expected from the
discussions of the diffracted wave nonlinearity earlier). On the other hand, the FNV
predictions differ appreciably for these values of kR.

Systematic MEL computations similar to the above are conducted. Our selection of
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Figure 17. Third-harmonic ‘ringing’ horizontal wave force amplitude |f(3)|k3/ρg for a sur-
face-piercing vertical circular cylinder (D/R = 3) in Stokes incident waves of different (relative)
wavelengths kR and amplitudes kA. The results shown are: experimental measurements, MAR-
INTEK for kA ∼ 0.15 (�) and 0.20 (N); and fully nonlinear MEL simulations for kA ∼ 0.10
(
⊗
/©, with/without drag correction), 0.15 (�/�, with/without drag correction) and 0.20 (4). The

range of Keulegan–Carpenter numbers Kc ≡ πA/R for the range of kA considered are indicated.
For comparison, frequency-domain perturbation results of FNV (- - -) and MM (——) (which are
independent of kA after the normalization in |f(3)|) are also plotted.

parameters is guided by the experimental cases reported in MARINTEK. Specifically,
we consider D/R = 3, kR = 0.22, 0.29 and 0.39, and the kA range from 0.10 ∼ 0.20.
MARINTEK also contains data for kA ∼ 0.25 which we do not consider. For this
value of kA, wave breaking is observed in the MEL results for all three kR, and the
simulations are stopped before steady state can be reached. Wave breaking under the
same conditions is also reported in MARINTEK.

Figure 17 summarizes the comparisons for the normalized third-harmonic (‘ringing’)
force amplitude |f(3)|. Also plotted are the frequency-domain perturbation results of
FNV and MM. As mentioned earlier, for the lower kR, flow separation effects may
play a role. To provide an assessment, the Keulegan–Carpenter number Kc ≡ πA/R
(for the range of kA considered) is noted on a second horizontal axis. For the lowest
kR = 0.22 case, the MEL result with the (Morison-type) drag correction (cf. (4.5)) is
also shown.

Considering the fact that |f(3)| is a third-order quantity, the overall excellent
agreement between MEL and MARINTEK is remarkable. For kR = 0.22, the
addition of a Morison-type correction improves the comparison somewhat but the
discrepancies are small in either case. In contrast, the FNV and MM predictions are
acceptable only for lower kR and smaller values of kA. For the case of kR = 0.29, for
example, perturbation results are good for kA < 0.15 but differ from fully nonlinear
simulations and experiments by O(70%) for kA ∼ 0.20. As (local diffracted wave)
nonlinearity increases with kR, these discrepancies increase and perturbation theories
over-predict |f(3)| by O(100%), for example, for kR = 0.39, even for relatively small
incident steepness of kA ∼ 0.1.

We remark finally that the computational parameters for the present MEL simu-
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lations are chosen to provide reliable predictions up to m = 3 (cf. § 4.1). In theory,
even higher-order force harmonics m = 4, 5, . . . , can be of interest. These can, in
principle, be obtained similarly by direct fully nonlinear MEL computations with
suitable choices of computational parameters.

5. Conclusions
We develop effective fully nonlinear mixed-Lagrangian-Eulerian (MEL) simulations

using quadratic boundary elements (QBEM) for general three-dimensional wave–body
interactions. A number of techniques are developed to improve the efficacy of this
method for wave diffraction and radiation problems for surface-piercing bodies.
The method is validated extensively using convergence tests and comparisons to
perturbation theories and experiments where available.

We apply the method to the study of two nonlinear three-dimensional wave–body
problems. The first problem is the development of waves on the bow of an advancing
ship. We use MEL simulations to obtain steady-state bow wave profiles for a flared
wedge geometry, a Wigley hull, and a Series 60 bow. We obtain excellent comparisons
to experimental measurements (available for the latter two hulls). Comparisons are
also made to nonlinear slender-body (quasi-two-dimensional ) approximations which
show the importance of three-dimensionality and upstream influence not generally
accounted for in slender-body theories.

The second problem is the fully nonlinear diffraction of incident Stokes waves
by a surface-piercing cylinder. Our main interest is the third-harmonic (ringing)
wave excitation on the body for which experimental measurements are reported. The
MEL predictions compare remarkably well with experiments and provide unequivocal
evidence that fully nonlinear wave diffraction is a sufficient mechanism for the so-
called ringing phenomenon.

This research is supported financially by grants from the Office of Naval Research
whose sponsorship is gratefully acknowledged.
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